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Abstract—Multicore systems should support both speculative
and non-speculative parallelism. Speculative parallelism is easy
to use and is crucial to scale many challenging applications,
while non-speculative parallelism is more efficient and allows
parallel irrevocable actions (e.g., parallel I/O). Unfortunately,
prior techniques are far from this goal. Hardware transactional
memory (HTM) systems support speculative (transactional) and
non-speculative (non-transactional) work, but lack coordination
mechanisms between the two, and are limited to unordered
parallelism. Prior work has extended HTMs to avoid the lim-
itations of speculative execution, e.g., through escape actions and
open-nested transactions. But these mechanisms are incompatible
with systems that exploit ordered parallelism, which parallelize
a broader range of applications and are easier to use.

We contribute two techniques that enable seamlessly compos-
ing and coordinating speculative and non-speculative work in
the context of ordered parallelism: (i) a task-based execution
model that efficiently coordinates concurrent speculative and
non-speculative ordered tasks, allowing them to create tasks
of either kind and to operate on shared data; and (ii) a safe
way for speculative tasks to invoke software-managed speculative
actions that avoid hardware version management and conflict
detection. These contributions improve efficiency and enable new
capabilities. Across several benchmarks, they allow the system to
dynamically choose whether to execute tasks speculatively or non-
speculatively, avoid needless conflicts among speculative tasks,
and allow speculative tasks to safely invoke irrevocable actions.

Index Terms—multicore, speculative parallelism, ordered par-
allelism, fine-grain parallelism, transactional memory, thread-
level speculation, speculative forwarding, synchronization.

I. INTRODUCTION

Systems that support speculative parallelism, such as thread-

level speculation (TLS) and transactional memory (TM), have

two major benefits over non-speculative systems: they simplify

parallel programming [69, 79] and uncover abundant parallelism

in many hard-to-parallelize applications [47, 89]. However, even

applications that need speculation to scale have work that is best

executed non-speculatively. For example, some tasks are well

synchronized and running them speculatively adds overhead

and needless aborts. Moreover, non-speculative parallelism is

needed to perform irrevocable actions, such as I/O, in parallel.

Ideally, systems should support composition and coordination

of speculative and non-speculative tasks, and allow those tasks

to share data. Unfortunately, prior techniques fall short of

this goal. All prior hardware techniques to combine spec-

ulative and non-speculative parallelism have been done in

hardware transactional memory (HTM) systems [16, 36, 41, 62,

73]. HTM supports both speculative (transactional) and non-

speculative (non-transactional) code. But HTM lacks shared

synchronization mechanisms, so speculative and non-speculative

code cannot easily access shared data [26, 92]. Moreover, most

HTMs provide unordered execution semantics that miss many

opportunities for parallelization.

Recent work has instead focused on using speculation to

support ordered parallelism, where parallel tasks appear to

execute in a program-specified total or partial order [47,

70]. Ordered parallelism is more general and abundant than

unordered parallelism. For example, consider the problem of

parallelizing a transactional database. Using classic HTM, each

database transaction must execute on a single thread as a long

memory transaction. By contrast, ordered parallelism allows

breaking each database transaction into many short, ordered

tasks, exploiting abundant intra-transaction parallelism [29, 89].

Classic TLS systems leveraged ordered speculation to par-

allelize sequential programs [27, 30, 35, 75, 76, 86, 87, 97],

some HTMs offer programmer-defined commit order [16, 36,

71], and the recent Swarm architecture [46, 47, 48, 89] has

a rich execution model that can parallelize more algorithms

than TLS or TM and supports tiny ordered tasks efficiently.

However, these systems disallow non-speculative parallelism:

all tasks except the earliest active one execute speculatively.

The goal of this work is to bring the benefits of non-specula-

tive execution to systems that support ordered parallelism. This

is not merely a matter of adapting HTM techniques. Unordered

and ordered speculation systems address different needs and

need different mechanisms (Sec. II). To meet our goal, we

contribute two main techniques.

Our first contribution is Espresso, an expressive execution

model for speculative and non-speculative parallelism (Sec. III).

In Espresso, all work happens within tasks, which can run

speculatively or non-speculatively. Tasks can create children

tasks that run in either mode. Because Espresso efficiently

supports fine-grain tasks of a few instructions each, many tasks

access a single piece of data, which is known when the task

is created. To exploit this, Espresso provides synchronization

mechanisms to coordinate speculative and non-speculative tasks

efficiently. Moreover, Espresso lets the system decide whether

to run certain tasks speculatively or non-speculatively, reaping

the efficiency of non-speculative parallelism when it is plentiful,

while exploiting speculative parallelism when needed to scale.
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Fig. 1. Dijkstra’s single-source shortest paths algorithm (sssp).
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Fig. 2. Speedup of three versions of sssp on 1–256 cores
for two graphs. Total cache and queue capacities grow with
core count (Sec. VI), causing superlinear speedup in usa.

Our second contribution is Capsules, a technique that lets

speculative tasks avoid hardware-managed speculation, enabling

scalable system services and concurrent system calls (Sec. IV).

Prior work in HTM has proposed escape actions [13, 63, 100]

and open-nested transactions [59, 63, 64] to achieve similar

goals. Unfortunately, these mechanisms are incompatible with

many modern speculative systems. Specifically, they are incom-

patible with speculative forwarding, which allows speculative

tasks to read data written by uncommitted tasks. Forwarding

is critical for ordered parallelism, but causes tasks to lose

data and control-flow integrity (Sec. II-C). Capsules solve this

problem by implementing a safe mechanism to transition out

of hardware-managed speculation and by protecting certain

memory regions from speculative accesses. Unlike prior

techniques, Capsules can be applied to any speculative system,

even if speculative tasks can lose data or control-flow integrity.

Our contributions improve performance and efficiency, and

enable new capabilities. We implement Espresso and Capsules

atop Swarm (Sec. V) and evaluate them on a diverse set of

challenging applications (Sec. VI). At 256 cores, Espresso

outperforms non-speculative-only execution by gmean 6.9× and

speculative-only execution by gmean 22%. Capsules enable

the efficient implementation of important system services, like

a scalable memory allocator that improves performance by up

to 69×, and allow speculative tasks to issue concurrent system

calls, e.g., to fetch data from disk.

II. BACKGROUND AND MOTIVATION

We present three case studies that show the need to combine

speculative and non-speculative parallelism. Espresso subsumes

prior speculative execution models (HTM, TLS, and Swarm),

so these case studies use our Espresso implementation (Sec. V),

which does not penalize programs that do not use its features.

A. Speculation benefits are input-dependent

Dijkstra’s algorithm for single-source shortest paths (sssp)

aptly illustrates the tradeoffs between speculative and non-spec-

ulative parallelism. sssp finds the shortest distance between

some source vertex and all other vertices in a graph with

weighted edges. Each task visits one vertex, and tasks execute

in order of distance from the source. The first task to visit a

given vertex sets its distance and creates tasks to visit all its

neighbors; later tasks that visit the same vertex do nothing.

Fig. 1 shows code for sequential sssp, which uses a priority

queue to order tasks, and illustrates how it works.

sssp admits a non-speculative, one-distance-at-a-time par-

allelization [24, 55, 60]. At any given time, the system only

processes tasks with the lowest unprocessed distance; these

create tasks with higher distances. After all tasks for the current

distance have finished, cores wait at a barrier and collectively

move on to the next unprocessed distance. Since multiple same-

distance tasks may visit the same vertex, each task must use

proper synchronization to ensure safety.

This non-speculative sssp works well if the graph is

shallow and there are many vertices with the same distance

to the source. However, weighted graphs often have very few

vertices per distance, so non-speculative sssp will find little

work between barriers. In this case, scaling sssp requires

exploiting ordered parallelism, processing tasks across multiple

distances simultaneously. While most tasks are independent,

running dependent (same-vertex) tasks out of order will produce

incorrect results. Hence, exploiting ordered parallelism requires

speculative execution, running tasks out of order and committing

them in order. The Swarm architecture can do this, but it runs

all tasks (except the earliest active one) speculatively [47].

Neither strategy is always the best. Fig. 2 compares the speed-

ups of the non-speculative (Non-spec) and fully speculative (All-

spec) versions of sssp on two graphs: usa, a graph of Eastern

U.S. roads, and cage, a graph arising from DNA electrophoresis.

Both versions leverage Espresso’s hardware-accelerated task

scheduling and locality-aware execution (see Sec. VI-A for

methodology). At 256 cores, on usa All-spec is 248× faster than

Non-spec, which barely scales because there are few vertices

per distance. This is consistent with prior work [46, 47]. By

contrast, cage is a shallow unit-weight graph with about 36000

vertices per distance, so Non-spec outperforms All-spec by 21%,

as it does not incur the overheads of speculative execution.

These results show that forcing the programmer to choose

whether to use all-or-nothing speculation is undesirable. The

best way to parallelize sssp is a hybrid strategy: all lowest-

distance tasks should run non-speculatively, relying on cheaper

synchronization mechanisms to provide mutual exclusion, while

higher-distance tasks should run speculatively to exploit ordered

parallelism. But this requires the same task to be runnable in

either mode, which is not possible in current systems.

Espresso provides the mechanisms needed for this hybrid

strategy (Sec. III). First, it provides two synchronization

mechanisms, timestamps and locales, that have consistent

semantics across speculative and non-speculative tasks. Second,
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it lets the system choose whether to speculate or not, based

on the amount of available parallelism. Fig. 2 shows that the

Espresso version of sssp achieves the best performance on

both graphs, because it only uses speculative parallelism when

non-speculative parallelism is insufficient.

B. Combining speculative and non-speculative tasks

Even in applications that need speculative parallelization,

some tasks are best run non-speculatively. Consider des, a

discrete event simulator for digital circuits, which we adapt

from Galois [40, 70]. Each des task evaluates the effects of

toggling a gate input at a particular simulated time; if the gate’s

output toggles, the task creates new tasks for gates connected

to this output. As with sssp, ordered speculation enables des

to scale to hundreds of cores [46, 47].

We extend des to log the waveforms of intermediate signals,

a common feature in logic simulators. Each simulation task

that causes a toggle creates a separate logging task that writes

the event to a per-core in-memory log.

While simulation tasks must use ordered speculation to

scale, there is no good reason for logging tasks to speculate.

Logging is trivial to synchronize. Prior architectures for ordered

parallelism, however, run all tasks speculatively. This causes

abort cascades: if a simulation task aborts, its child logging

task aborts, and this in turn causes all logging tasks that have

later written to the same log to abort.

The right strategy is to let each speculative simulation task

launch a non-speculative logging task. A logging task runs

only after its parent commits, avoiding mispeculation. If its

parent aborts, it is discarded. Espresso enables this approach.
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Fig. 3. des speedup on 1–
256 cores, with speculative and
non-speculative logging tasks.

Fig. 3 compares the speedups

of using speculative and non-spec-

ulative logging in des. Speculative

logging causes needless aborts that

limit des’s performance beyond 64

cores. At 256 cores, non-speculative

logging is 4.1× faster.

Prior work in HTM has proposed

to let transactions register commit

handlers that run only at transaction

commit [59]. Espresso generalizes this idea to let any task create

speculative or non-speculative children. Additionally, Espresso’s

implementation requirements are different: unordered HTMs

commit transactions immediately after running, while ordered

tasks can stay speculative many cycles after they finish.

C. Software-managed speculation improves parallelism

When a speculative task produces output that is not im-

mediately needed, it can create a non-speculative child task

(Sec. II-B). However, a speculative task often needs to use the

results of some action, such as allocating memory, that is best

done without hardware speculation.

Prior work in HTM has proposed escape actions for this pur-

pose [13, 63, 100]. Escape actions let a transaction temporarily

turn off hardware conflict detection and version management

and run arbitrary code, including system calls. An escape

action can register an abort handler that undoes its effects if

the enclosing transaction aborts. For example, a transaction

can use escape actions to allocate memory from a conventional

thread-safe allocator, avoiding conflicts on allocator metadata.

The escape action’s abort handler frees the allocated memory.

Unfortunately, escape actions and similar mechanisms, such

as open-nested transactions [59, 63, 64], are incompatible with

architectures for ordered parallelism and many recent HTMs.

These architectures perform speculative forwarding [4, 29,

44, 71, 72, 74, 86, 88], which lets tasks access data written

by earlier, uncommitted tasks.1 Speculative forwarding is

crucial because ordered tasks may take a long time to commit.

Without speculative forwarding, many ordered algorithms scale

poorly [88] (e.g., des is 5× slower at 256 cores).2 However,

letting tasks access uncommitted state means they may read

inconsistent data, and lose data and control-flow integrity (e.g.,

by dereferencing or performing an indirect jump to an invalid

pointer). This makes escape actions unsafe: a mispeculating task

can begin a malformed escape action, or an escape action might

read temporarily clobbered data. Such an escape action could

perform actions that cannot be undone by an abort handler.
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Fig. 4. des speedup on 1–256
cores, with different allocators.

Without escape actions, prior

ordered speculative systems are

forced to run memory allocation

routines speculatively, and suffer

from spurious conflicts on allocator

metadata. Fig. 4 shows the perfor-

mance of des when linked with

TCMalloc [31], a state-of-the-art

memory allocator that uses thread-

local structures. des scales poorly with TCMalloc, achieving

a speedup of 23× at 100 cores and declining significantly at

higher core counts, where it is overwhelmed with aborts.

Capsules (Sec. IV) solve this problem by providing a general

solution for providing protected access to software-managed

speculation. The program prespecifies a set of capsule functions,

and the system guarantees that speculative tasks can only

disable hardware speculation by invoking these functions.

This prevents mispeculating tasks from invoking arbitrary

actions. Moreover, capsule functions have access to memory

that is not conflict-checked and is protected from accesses by

speculative tasks. Fig. 4 shows the performance of capalloc,

a memory allocator similar to TCMalloc that implements all

allocation routines, such as malloc, in capsule functions and

uses lock-based synchronization. capalloc makes des scale

well, outperforming TCMalloc by 39× at 256 cores.

III. ESPRESSO EXECUTION MODEL

Espresso programs consist of tasks that run speculatively

or non-speculatively. All tasks can access shared memory and

make arbitrary system calls. Espresso provides two synchro-

nization mechanisms: timestamps to convey order requirements

and locales to convey mutual exclusion and locality information.

Each task can optionally be given a timestamp and a locale.

1 We follow TLS terminology [71, 86, 88]; in software TMs, lack of
speculative forwarding is referred to as opacity [21, 34].

2 Without speculative forwarding, systems must stall [62] or abort [11, 95]
tasks that access uncommitted data.
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void ssspTask(Timestamp dist, Vertex* v) {
if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)
espresso::create<MAYSPEC >(&ssspTask,

/*timestamp=*/ dist + weight(v,n),
/*locale=*/ n->id, n);

}
}

void main() {
[...] /* Set up graph and initial values */
espresso::create<MAYSPEC >(&ssspTask ,

0, source->id, source);
espresso::run();

}
Listing 1. Espresso implementation of Dijkstra’s sssp algorithm.

Timestamps and locales have common semantics among

speculative and non-speculative tasks, allowing tasks running

in either mode to coordinate accesses to shared data.

Espresso supports three task types that control speculation:

SPEC tasks always run speculatively, NONSPEC tasks always

run non-speculatively, and MAYSPEC tasks may run in either

mode. All tasks can create children tasks of any type.

We expose these features through a simple API. Tasks create

children tasks by calling the following (inlined) function:

espresso::create<type>(taskFn,
[timestamp , locale ,] args...)

The new task will run the task function taskFn with arguments

supplied through registers. If timestamp or locale are given,

the task will be synchronized according to their semantics.

Espresso programs start by creating one or more initial

tasks with espresso::create and calling espresso::run,

which returns control after all tasks finish. Listing 1 shows

the implementation of sssp described in Sec. II-A, which we

will use to explain Espresso’s semantics. In this example, the

program creates one initial task to visit the source vertex.

A. Espresso semantics

Espresso runs all speculative tasks atomically, i.e., specu-

lative tasks never appear to interleave. Moreover, Espresso

provides strong atomicity [10, 20] between speculative and

non-speculative tasks: the effects of a speculative task are

invisible to non-speculative tasks until the speculative task

commits (containment [10]), and non-speculative writes do not

appear mid-speculative-task (non-interference [10]). Espresso

does not guarantee atomicity among non-speculative tasks.

Atomicity has implications on the allowed concurrency

between parent and child tasks. If a parent creates a speculative

child, the child appears to execute after the parent finishes. If

a speculative parent creates a non-speculative child, the child

does not run until after the parent commits (e.g., Sec. II-B).

There are no atomicity guarantees among non-speculative

tasks. The programmer must ensure non-SPEC tasks are well-

synchronized, that is, they avoid race conditions.

Espresso provides two synchronization mechanisms to con-

trol how the system executes tasks. Timestamps enforce order

among tasks, and locales enforce mutual exclusion. Timestamps

and locales have consistent semantics for both speculative and

non-speculative tasks, but have different effects on concurrency,

described below and summarized in Table I.

Timestamps: Timestamps are integers that specify a partial

order among tasks. If two tasks have distinct timestamps, the

TABLE I
THE EFFECT OF ESPRESSO’S SYNCHRONIZATION MECHANISMS.

Task mode Synchronization mechanism
Timestamps Locales

Non-speculative barriers mutual exclusion
Speculative ordered commits reduce conflicts

system ensures they appear to execute in timestamp order. To

avoid priority inversion, a timestamped task may only assign

timestamps greater than or equal to its own to its children. A

non-timestamped task cannot create timestamped children.

Timestamps impose barrier semantics among non-specula-

tive tasks. For example, a non-speculative task with timestamp

10 will not run until all tasks with timestamp < 10 have finished

and committed. However, speculative tasks can run out of order,

speculating past these barriers. Timestamps only constrain the

commit order of speculative tasks. Hence, speculation can

increase parallelism for ordered algorithms.

Listing 1 shows timestamps in action. Each sssp task has a

timestamp that corresponds to its path’s distance to the source

vertex. If all tasks had type NONSPEC instead of MAYSPEC, this

code would implement the non-speculative, one-distance-at-a-

time sssp version from Sec. II-A. If all tasks had type SPEC,

the code would implement the fully speculative sssp version.

Locales: A locale is an integer that, if specified, denotes the

data the task will access. Locales enforce mutual exclusion:

if two tasks have the same locale, Espresso guarantees that

they do not run concurrently. For tasks that only need to

acquire a single lock, locales are a more efficient alternative

to conventional shared-memory locks. Moreover, Espresso

hardware uses locales to map tasks that are likely to access

the same data to the same chip tile in order to exploit locality.

For non-speculative tasks, locales can be used as mutexes to

write safe parallel code. For speculative tasks, locales are not

necessary, since these tasks already appear to execute atomically.

Locales are still useful in reducing aborts [46] as well as

exploiting locality across speculative and non-speculative tasks.

Listing 1 shows locales in action. Each sssp task uses the

ID of the vertex it processes as its locale. For non-speculative

tasks, this implements mutual exclusion among tasks that access

the same vertex. For both speculative and non-speculative tasks,

this approach sends all tasks that operate on the same vertex to

the same chip tile, improving temporal locality. An optimization

to avoid cache ping-ponging could apply a technique from prior

work [46]: use the cache line of the vertex as the locale.

These synchronization mechanisms cover important use

cases, but are not exhaustive. For example, locales only provide

single-lock semantics, but a task may need to acquire multiple

locks. In this case, the task may either use shared-memory locks

or resort to speculative execution by marking the task SPEC.

Espresso does not support multiple locales per task because

doing so would be much more complex.

Comparison with other execution models: Espresso gen-

eralizes both Swarm and HTM. Swarm programs consist

of all-timestamped SPEC tasks. Espresso extends Swarm to

support non-speculative tasks and to make timestamps optional.
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Locales extend Swarm’s spatial hints [46] to provide mutual

exclusion among non-speculative tasks. Espresso also subsumes

HTM. HTM programs consist of transactional (speculative)

and non-transactional (non-speculative) code blocks. These are

equivalent to non-timestamped SPEC and NONSPEC tasks.

B. MAYSPEC: Tasks that may speculate

Espresso tasks run speculatively or not. However, the

programmer must choose one of three types for each task:

SPEC, NONSPEC, or MAYSPEC. MAYSPEC lets the system decide

which mode the task should run in. This is useful as there are

times when it is safe to run a task speculatively but not non-

speculatively. If the system wants to dispatch a MAYSPEC task

that cannot yet run non-speculatively, the task runs speculatively.

Choosing between NONSPEC and MAYSPEC affects perfor-

mance but not correctness. NONSPEC and MAYSPEC tasks must

already be well-synchronized, so they are also safe to run

speculatively. If the task will be expensive to run speculatively

(e.g., the logging tasks in Sec. II-B), it should be NONSPEC.

Otherwise, MAYSPEC lets the system decide.

Listing 1 shows MAYSPEC in action. All sssp tasks are

tagged as MAYSPEC because they can run in either mode, as

locales enforce mutual exclusion among same-vertex tasks. This

implements the right strategy discussed in Sec. II-A: tasks with

the lowest unprocessed distance run non-speculatively, and if

this non-speculative parallelism is insufficient, the system runs

higher-distance (i.e., higher-timestamp) tasks speculatively.

C. Exception model

Espresso does not restrict the actions that tasks may perform.

Beyond accessing shared memory, both speculative and non-

speculative tasks may invoke irrevocable actions that cannot be

undone by a versioned memory system. That is, tasks in either

running mode can call into arbitrary code, including code that

triggers exceptions and invokes system calls.

To provide precise exception semantics and enforce strong

atomicity, a speculative task that triggers an exception or a

system call yields until it becomes the earliest active task

and is then promoted to run non-speculatively. To guarantee

promoted tasks still appear strongly atomic, a promoted task

does not run concurrently with any other non-speculative task

(Sec. V-B). Previous TLS systems used similar techniques to

provide precise exceptions [35, 87].

Promotions can be expensive but are rare in practice. To avoid

frequent and expensive promotions, tasks that frequently invoke

irrevocable actions should use the NONSPEC type. Capsules

further reduce the need for promotions.

Finally, Espresso introduces a promote instruction to expose

this mechanism. If called from a speculative task, promote

triggers an exception that will, in the absence of conflicts,

eventually promote the task. If called from a non-speculative

task, promote has no effect. promote has two uses. First, it

can be invoked by tasks that detect an inconsistency and know

they must abort, similar to transactional retry [38]. Second,

promote lets code that must perform an expensive action avoid

doing so speculatively (e.g., Listing 2 in Sec. IV).

IV. CAPSULES

Although hardware version management is more efficient

than a software-only equivalent, hardware-only speculation

can cause more serialization. For example, Espresso supports

irrevocable actions in speculative tasks by promoting them

to run non-speculatively, an expensive process that limits

parallelism. Irrevocable actions cannot run under the control

of hardware speculation, since hardware cannot undo their

effects. This is limiting, because letting speculative tasks

invoke system calls in parallel has many legitimate uses [6].

Beyond system calls, tasks may wish to perform software-

managed speculative actions that exploit application-specific

parallelization strategies, such as commutativity [18, 52, 65,

77]. As we saw in Sec. II-C, prior work proposed escape

actions to achieve this goal [13, 63, 100]. But escape actions

are incompatible with systems for ordered parallelism that need

speculative forwarding. Forwarding makes speculative tasks

lose data and control-flow integrity, making it impossible for

software to dependably undo speculative actions.

Specifically, escape actions suffer from two problems with

forwarding. First, a mispeculating task that has lost control-flow

integrity may jump to malformed or invalid code that initiates

an escape action and performs an unintended system call, such

as overwriting a file or exiting the program, that cannot be

undone. Second, mispeculating tasks may clobber state used

by escape actions, causing them to misbehave when they read

this uncommitted data. For example, consider an escape action

that allocates memory from a free list. A mispeculating task

can temporarily clobber the free list, causing the escape action

to return invalid data or crash.

To address these issues, we present Capsules, a technique

to enable safe software-managed speculative actions in any

speculative system. Capsules are a powerful tool for systems

programmers. Similar to escape actions, Capsules can avoid the

overheads of hardware conflict detection, perform irrevocable

actions, and undo speculative actions by registering abort han-

dlers. Capsules enable programmers to guarantee safety even

if a mispeculating task attempts to use Capsules incorrectly. It

does this through two mechanisms. First, it provides untracked

memory that is protected from mispeculating tasks. Second,

it uses a vectored-call interface that guarantees control-flow

integrity within a capsule. We add three new instructions to the

ISA, capsule call, capsule ret, and capsule abort -

handler. We explain their semantics below.

A. Untracked memory

We allow memory segments or pages in the application’s

address space to be classified as untracked. Untracked memory

is neither conflict-checked nor versioned in hardware, eliminat-

ing speculation overheads for accesses to untracked data. We

use standard virtual memory protection mechanisms to prevent

speculative tasks from accessing untracked memory without

entering a capsule (Sec. V-C). This is analogous to how OS

kernel memory is protected from userspace code.

Software-managed speculative state should be maintained in

untracked memory both to avoid the overhead of hardware
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conflict detection as well as to ensure it is not corrupted

by speculative tasks. Accesses to untracked data can be

synchronized conventionally (e.g., with locks) to ensure safety.

B. Safely entering a capsule

Since a speculative task can lose control-flow integrity, we

need a way to enter a capsule that guarantees the integrity of

capsule code. To achieve this, we use a vectored-call interface,

similar to that of system calls.

We require that all capsule code is wrapped into capsule func-

tions placed in untracked memory. A capsule-call vector stored

in untracked memory contains pointers to all capsule functions.

Since speculative tasks cannot access untracked memory, they

can only call capsule functions with the capsule call

instruction. capsule call is similar to an ordinary call

instruction, but it takes an index into the capsule-call vector

as an operand instead of a function address. capsule call

looks up the index in the vector. If the index is within bounds, it

jumps to its corresponding function and disables hardware spec-

ulation; if the index is out of bounds, it triggers an exception.

capsule ret is used to return from a capsule function.

The vectored-call interface retains safety even when specu-

lative tasks lose control-flow integrity. A task can only enter a

capsule through a capsule call instruction, which can only

jump to the beginning of a known capsule function.

C. Capsule execution

A capsule may access untracked memory and perform

irrevocable actions such as system calls without triggering

a promotion. It typically operates on untracked memory, but

may also access tracked memory (e.g., to make data such as

file contents available to non-capsule speculative tasks). Its

accesses to tracked memory use the normal conflict detection

and resolution mechanisms. This ensures loads from tracked

memory return valid data if the capsule is running non-

speculatively, and that the enclosing task will eventually abort

if a capsule reads invalid data while running speculatively.

Like a system call, a capsule function cannot trust its caller

to be well behaved, as the caller could be mispeculating. A

speculatively running capsule may receive invalid data through

arguments or tracked memory, or perhaps should not have

been called due to control mispeculation. To handle these, it

may register an abort handler to compensate for its actions. It

uses the capsule abort handler instruction, which takes a

function pointer and arguments as operands. The given function

will run non-speculatively if the capsule’s enclosing task aborts.

A capsule function running speculatively must ensure it only

performs actions for which it can safely compensate. It must

check its arguments and data read from tracked memory before

using the data in an unsafe way. To avoid performing rare

actions that would be very expensive or unsafe to perform

speculatively, it may use the promote instruction, which is a

no-op if running non-speculatively, but causes the enclosing

task to abort if it was speculative and immediately exits the

capsule. Thus, code following a promote instruction will only

run non-speculatively, is guaranteed to be in a consistent state,

and any abort handlers it registers will not run.

void* malloc(size_t bytes) {
if (BAD_STACK()) promote;
if (bytes > (16 << 20)) promote;
if (bytes == 0) capsule_ret(nullptr);
void* ptr = do_alloc(bytes);
capsule_abort_handler(&do_dealloc , ptr);
capsule_ret(ptr);

}
Listing 2. malloc implemented as a capsule function.

D. Capsule programming example

Listing 2 shows how malloc can be written as a capsule

function. malloc first checks that its stack pointer is valid

and has sufficient space, using promote otherwise. malloc

also checks whether the requested allocation is very large,

using promote if the program wants to allocate more than

16 MB. This avoids wasting excessive space to satisfy large

requests from mispeculating tasks. After these checks, malloc

calls do alloc, which allocates the requested chunk. Finally,

malloc uses capsule abort handler to register a call to

do dealloc as the abort handler. In this example, do alloc

and do dealloc are thread-safe functions that use conven-

tional synchronization (e.g., locks) to perform allocation and

deallocation of heap memory. All allocator metadata (e.g., free

lists) are stored in untracked memory. If the calling task aborts,

the call to do dealloc runs, freeing the allocated memory.

V. IMPLEMENTATION

We implement Espresso and Capsules by extending

Swarm [2, 46, 47, 48, 89], a recent architecture for speculative

parallelization. We choose Swarm as a baseline because it

already provides most of the mechanisms needed for Espresso:

it efficiently supports fine-grain tasks, implements scalable

ordered speculation using timestamps, and performs locality-

aware execution [46]. However, Espresso could be implemented

over classic TLS systems as well, and Capsules are a general

technique that could be applied to any speculative system,

including HTM, TLS, Swarm, or Espresso. We first present

Swarm’s main features (see prior work [46, 47] for details),

then describe how they are extended to implement Espresso,

and finally describe the implementation of Capsules.

A. Baseline Swarm microarchitecture

The Swarm microarchitecture introduces modest changes

to a tiled, cache-coherent multicore, shown in Fig. 5. Each

tile has a group of simple cores, each with its own private L1

cache. All cores in a tile share an L2 cache, and each tile has

a slice of a fully shared L3 cache. Each tile is augmented with

a task unit that queues, dispatches, and commits tasks.

64-tile, 256-core chip

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 sliceRouter

Tile organization

Task unit
Mem / IO

M
e
m

/ 
IO

Mem / IO

M
e
m

/ IO

Tile

Fig. 5. 256-core chip and tile configuration.
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Fig. 6. Swarm (a,b) and Espresso (a,b,c,d) enqueue protocol between a local task unit (LTU) and a remote task unit (RTU), as a parent task creates a child.

Unlike Espresso, Swarm programs consist exclusively of

speculative timestamped tasks. Swarm uncovers parallelism

by executing tasks speculatively and out of order. To uncover

enough parallelism, Swarm can speculate thousands of tasks

ahead of the earliest active task. Swarm efficiently supports

fine-grain tasks and a large speculation window through five

techniques: hardware task management, large task queues,

scalable speculation, high-throughput ordered commits, and

locality-aware execution.

Hardware task management: Each task unit queues runnable

tasks and stores the speculative state of finished tasks until

they commit. Each task is represented by a task descriptor that

contains its function pointer, timestamp, and arguments.

Tasks are created using a create task instruction with ar-

guments passed through registers. The local task unit asynchro-

nously enqueues tasks to remote tiles. The parent’s speculative

state tracks where each child is enqueued. This enables parent

commit or abort notifications to be sent to those children, as

shown in Fig. 6(a) and Fig. 6(b). A parent abort notification

aborts and discards the child, while a parent commit notification

permits mechanisms to relieve queue pressure (see below).

To uncover enough parallelism, a task unit can dispatch

any task to a core, even if its parent is still speculative. Cores

dequeue tasks for execution by timestamp priority from the local

task unit. A successful dequeue initiates speculative execution

at the task’s function pointer and makes the task’s arguments

available in registers. A core stalls if there is no task to dequeue.

This support minimizes task creation and dispatch costs,

enabling tiny tasks: a single instruction creates each task, and

arguments are copied from/to registers, without stack accesses.

Large task queues: The task unit has two main structures:

(i) a task queue that holds task descriptors for every task in the

tile, and (ii) a commit queue that holds the speculative state

of tasks that have finished execution but cannot yet commit.

Together, these queues implement a task-level reorder buffer.

Task and commit queues support tens of speculative tasks

per core (e.g., 64 task queue entries and 16 commit queue

entries per core) to implement a large window of speculation

(e.g., 16 thousand tasks in the 256-core chip). Nevertheless,

task and commit queues can fill up. This requires some simple

actions to ensure forward progress. Specifically, tasks that

receive parent-commit notifications can be spilled to memory

to free task queue entries. If no tasks can be spilled, queue

resource exhaustion is handled by either stalling task creation

or aborting higher-timestamp tasks to free space [47].

Scalable speculation: Swarm enhances previously proposed

speculation mechanisms to support a large number of spec-

ulative tasks. Swarm uses eager (undo-log-based) version

management and eager conflict detection using Bloom filters,

similar to LogTM-SE [94]. Swarm forwards still-speculative

data read by a later task. When a task aborts, Swarm selectively

aborts only its descendants and data-dependent tasks.

Swarm detects conflicts at cache line granularity, and lever-

ages the cache hierarchy to substantially reduce the number of

conflict checks and their cost [47]: L1 caches are managed so

that L1 hits need not be conflict-checked, and L2 caches are

managed so that L2 hits need only be conflict-checked against

tasks in the same tile. The L3 directory maintains metadata so

that L2 misses are conflict-checked only against tiles where

uncommitted tasks may have accessed the same cache line.

To perform speculative forwarding and commits, Swarm

dynamically produces a total order among tasks. Each task is

given a unique virtual time (VT) when it is dispatched. VTs are

128-bit integers that extend each 64-bit programmer-assigned

timestamp with a unique 64-bit tiebreaker. Swarm only allows

tasks to access speculative data written by lower-VT tasks, and

commits tasks in VT order to preserve correctness.

High-throughput ordered commits: Swarm adapts the virtual

time algorithm [45] to achieve high commit throughput. Tiles

periodically communicate with an arbiter (e.g., every 200 cycles)

to discover the VT of the earliest (lowest-VT) active (unfinished)

task in the system. All tasks with lower VTs can then commit.

This scheme uses a hierarchical min reduction and can commit

many tasks per cycle, thus scaling to hundreds of cores with

tasks as short as a few instructions.

Locality-aware execution: Finally, Swarm leverages a tech-

nique called spatial hints [46] to perform locality-aware

execution. A hint is an optional 64-bit integer that, much like

a locale, abstractly denotes the data the task is likely to access.

Swarm exploits hints by running same-hint tasks in the

same tile and serializing them. The hint is stored in the task’s

descriptor. When a core creates a new task, the task unit hashes

its 64-bit hint to a tile ID, then enqueues the task to the selected

tile. Thus, same-hint tasks run on the same tile. Tasks without

hints are enqueued to random tiles. Then, the dispatch logic at

each tile serializes same-hint tasks to avoid conflicts.

B. Espresso microarchitecture

Espresso generalizes Swarm’s microarchitecture to (i) sup-

port non-speculative tasks, (ii) handle their interactions with

speculative tasks, and (iii) implement exceptions.

Tasks use the same hardware task descriptor format as

in Swarm, with two additional bits to store the type (SPEC,

NONSPEC, or MAYSPEC). The dispatch, queuing, speculation

mechanisms, and commit protocol of SPEC tasks are unchanged

from those of Swarm in Sec. V-A.
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Non-speculative tasks require simple changes to the dispatch

and queuing logic. A NONSPEC task may run only when (i) its

parent is non-speculative or committed, (ii) it is not timestamped

or its timestamp matches that of the earliest active task, (iii) it

has no locale or its locale does not match that of any running

task, and (iv) the system is not satisfying a promotion.

The tile’s dispatch logic performs all these checks using

local state. It picks the lowest-timestamp task available to

run, but excludes NONSPEC tasks that are not yet runnable.

Locales regulate task dispatch in the same way as spatial hints:

tasks with the same locale are enqueued to the same tile and

serialized, providing mutual exclusion.

A non-speculative task frees its task queue entry when

dispatched and does not use a commit queue entry. This reduces

queue pressure. Since the task can never abort, it does not track

its children or send them any notifications, as shown in Fig. 6(c).

This reduces traffic and allows non-speculative tasks to create

an unbounded number of children; their children can always

be spilled to memory.

Mixing non-speculative and speculative tasks requires chan-

ging the dispatch, conflict detection, and commit mechanisms:

1. Speculative NONSPEC enqueue: If a speculative task creates

a NONSPEC child destined to a remote tile, since the child cannot

run before its parent commits, the task is buffered locally and

enqueued to the remote tile only when the parent commits

(Fig. 6(d)). This avoids needless abort and commit notifications.

2. MAYSPEC dispatch: A MAYSPEC task is always speculatively

runnable, but may exploit non-speculative execution for effi-

ciency. The dispatch logic checks if the task meets the same

conditions for a NONSPEC task to run. If so, the task executes

non-speculatively; otherwise, it executes speculatively.

3. Conflicts: A non-speculative task does not track read/write-

sets. However, to implement strong atomicity, its accesses are

conflict-checked against speculative tasks. A non-speculative

access that conflicts with a running speculative task’s read/write

set aborts the speculative task.

If a non-speculative task N conflicts with a finished spec-

ulative task S, S may be unsafe to abort. Recall that tiles

periodically communicate to find the virtual time (VT) of the

earliest active task, and all finished tasks whose VTs precede

that earliest active VT must then commit. If the tile has sent a

locally earliest active VT to the commit arbiter that is higher

than S’s VT, S may be declared committed by the arbiter. To

handle this race, N stalls until the arbiter replies and S’s fate

is known. This race is very rare.

4. Commit protocol: When tiles send their earliest active VT

to the arbiter, the timestamps of non-speculative tasks are

included for consideration. This prevents any speculative task

with a higher timestamp from committing, while allowing same-

timestamp speculative tasks to commit.

Exceptions: Any attempt by a speculative task to perform

an irrevocable action (e.g., a system call or segmentation

fault) causes a speculative exception. There are two causes

for speculative exceptions: either the task legitimately needs

to execute an irrevocable action, or it is a mispeculating task

performing incorrect execution.

Whereas TLS schemes stall the core running the exceptioned

task [35, 87], Espresso leverages commit queues to avoid

holding up a core. The exceptioned task is immediately stopped

and its core becomes available to run another task. Its writes

are rolled back, and its children tasks are aborted and discarded.

Espresso then keeps the task’s read set active in the commit

queue. If the read set detects a conflict with an earlier task, the

exceptioned task was mispeculating, so it becomes runnable

again for speculative execution. However, if the task becomes

the earliest active task without having suffered a conflict, it

legitimately needs to perform an irrevocable action.

After an exceptioned task becomes the earliest active task

in the system, it is promoted to re-run non-speculatively. This

proceeds as follows. First, the task’s tile sends a promotion

request to the virtual time arbiter. The arbiter forbids other tiles

from dispatching further non-speculative tasks. This is because

the promoted task was speculative, so it must run isolated from

all other tasks. After all currently running non-speculative tasks

have finished, the exceptioned task is promoted and allowed

to run. Although the promoted task cannot run concurrently

with other non-speculative tasks, other speculative tasks can

continue execution, ordered after the promoted task. Though

expensive, this process happens rarely.

In summary, Espresso requires simple extensions to Swarm,

and in return substantially improves performance and pro-

grammability, as we will see in Sec. VI.

C. Capsules implementation

Capsules extend the system to implement untracked memory

and a vectored-call interface to capsule functions.

Untracked memory: Our implementation of untracked mem-

ory makes simple extensions to standard virtual memory

protection mechanisms. In addition to the standard read, write,

and execute permissions bits, we add an untracked permission

bit to each page table entry and TLB entry. An access to an

untracked page from a speculative task that is not in a capsule

causes a memory-protection exception. Programs can request

tracked or untracked memory using the mmap system call, and

change a page’s permissions with the mprotect system call.

Alternatively, untracked memory could be implemented as a

new virtual memory segment.

To track whether the current task is in a capsule, each core

has a capsule depth counter, initialized to zero at task start to

indicate that the task is not yet in a capsule. capsule call

increments the capsule depth counter by one, and capsule -

ret decrements it by one. This allows capsule functions to call

other capsule functions, while tracking when the task finally

exits the outermost capsule.

Safely entering a capsule: The capsule-call vector contains

pointers to all capsule functions and is stored at a fixed location

in untracked memory. It would be cumbersome to manually

assign unique IDs to capsule functions and build the call vector.

However, the linker and loader can automate this process,

similarly to how they handle position-independent code [42].

Capsule aborts: If a task aborts, any registered abort handlers

must run non-speculatively. After an abort, we enqueue each

abort handler as a NONSPEC task with no timestamp.

8



Special handling is required to abort a task while it is

still executing a capsule. Normally, a task is immediately

stopped after detecting a conflict. A capsule, however, cannot

be stopped arbitrarily—it must be allowed to complete, and

then its abort handlers run, to guarantee a consistent state in

untracked memory. Nonetheless, to avoid priority inversion,

our implementation always handles conflicts immediately upon

detection. If the task is in a capsule when it needs to be aborted,

all the task’s side-effects to tracked memory are rolled back

immediately, so other tasks can proceed to use the recovered

state in tracked memory. Abort notifications are sent to its

children. The capsule is then marked as doomed and allowed

to continue execution. A doomed capsule’s writes to tracked

memory are not performed, nor are its enqueues. Its accesses to

untracked memory are performed normally. The core becomes

available to run another task after the doomed capsule exits.

VI. EVALUATION

We evaluate Espresso and Capsules on a diverse set of

applications. We find that non-speculative execution brings

modest performance and efficiency gains when non-speculative

parallelism is plentiful, but forcing non-speculative execution

with NONSPEC can dramatically hurt parallelism. By contrast,

MAYSPEC achieves the best of both worlds and can be applied

indiscriminately without hurting parallelism, making it easy to

use. We find that Capsules yields order-of-magnitude speedups

in important use cases, which we show through two case studies

on memory allocation and disk-based key-value stores.

A. Experimental methodology

Modeled system: We use a cycle-level, execution-driven

simulator based on Pin [57, 68] to model systems of up to 256

cores, as shown in Fig. 5, with parameters in Table II. Swarm

parameters match those of prior work [46, 47, 48]. We use

detailed core, cache, network, and main memory models, and

simulate all task and speculation overheads (e.g., task traffic,

running mispeculating tasks until they abort, simulating conflict

check and rollback delays and traffic, etc.). Our 256-core con-

figuration is similar to the Kalray MPPA [23]. We also simulate

TABLE II
CONFIGURATION OF THE 256-CORE SYSTEM.

Cores
256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA;
single-issue in-order, scoreboarded (stall-on-use) [46]

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency

L3 cache
64 MB, shared, static NUCA [51] (1 MB bank/tile),
16-way, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC
8×8 mesh, 128-bit links, X-Y routing, 1 cycle/hop when
going straight, 2 cycles on turns (like Tile64 [93])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (16384 total),
16 commit queue entries/core (4096 total)

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [14]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Virtual time
128-bit virtual times, tiles send updates to
virtual time arbiter every 200 cycles

Spills Spill 15 tasks when task queue is 85% full

TABLE III
BENCHMARKS: SOURCE IMPLEMENTATIONS AND INPUTS; RUN TIME,

AVERAGE TASK LENGTH, AND SERIAL-RELATIVE PERFORMANCE ON A

SINGLE-CORE SYSTEM.

Application Input
1-core cycles 1-core perf.
total per task vs. serial

sssp [70]
cage14 [22] 1.6 B 53 0.93×
East USA roads [1] 2.4 B 299 1.74×

cf [84, 98] movielens-1m [37] 1.5 B 59500 0.98×
triangle [84] R-MAT [17] 59.5 B 1240 1.02×
kmeans [61] m40 n40 n16384 d24 c16 8.6 B 6500 1.02×
color [39] netflix [8] 11.1 B 163 1.42×
bfs [55] hugetric-00020 [5, 22] 3.3 B 139 0.93×
mis [85] R-MAT [17] 1.7 B 121 0.80×
astar [47] Germany roads [67] 1.6 B 458 1.37×

genome [61] g4096 s48 n1048576 2.3 B 850 1.01×
des [70] csaArray32 1.7 B 506 1.82×

nocsim [3] 16x16 mesh, tornado 19.3 B 979 1.79×
silo [90] TPC-C, 4 whs, 1 Ktxns 0.1 B 3380 1.13×

smaller systems with square meshes (K ×K tiles for K ≤ 8).

Our 1-core system always runs all tasks non-speculatively. We

keep per-core L2/L3 sizes and queue capacities constant across

system sizes. This captures performance per unit area. As a

result, larger systems have higher queue and cache capacities,

which sometimes cause superlinear speedups.

Benchmarks: Table III reports the benchmarks and inputs

used to evaluate Espresso and the Capsules-based allocator. We

consider 17 ordered and unordered benchmarks.

We ported 15 benchmarks from Swarm [46, 47, 89], (all

except those that need Fractal [89] to scale). Eight of the 15

benchmarks have tasks that can be well-synchronized with

timestamps and locales: sssp, color, bfs, mis, astar, and

des are ordered applications, and genome and kmeans are

unordered transactional applications.

We also port bulk-synchronous cf (collaborative filtering)

and triangle (triangle counting) from Ligra [84, 98]. Their

tasks are well-synchronized: they perform lock-free atomic

updates and use barriers, which we replace with timestamps.

Sec. VI-B compares Espresso versions by declaring all

well-synchronized tasks as SPEC, NONSPEC, or MAYSPEC. The

source code is otherwise identical. Swarm runs all tasks

speculatively, and is thus equivalent to Espresso’s SPEC. We

also evaluate state-of-the-art software-only parallel versions as

in prior work [46, 47, 89] (except for genome and kmeans,

which lack a non-transactional parallel version, and astar, for

which software-parallel versions yield no speedup [47]).

Four of the benchmarks have a significant amount of dynamic

memory allocation: genome, des, nocsim, and silo. Sec. VI-C

compares the effect of different allocators on the SPEC (Swarm)

version of these applications.

We report speedups relative to tuned 1-core Swarm imple-

mentations. Due to hardware task management, 1-core Swarm

versions are competitive with (and often faster than) tuned

software-only serial implementations, as shown in Table III.

We fast-forward each benchmark to the start of its parallel

region and run the entire parallel region. We perform enough

runs to achieve 95% confidence intervals ≤ 1%.

Memory allocation: Only two of the benchmarks used in

Sec. VI-B (genome and des) allocate memory within tasks.

To separate concerns, we study the impact of allocators in

9



1

128

256
S

p
e
e
d
u
p

sssp-cage

1

256

512
sssp-usa

1

128

256
cf

1

128

256
triangle

1

64

128
genome

1

128

256
kmeans

1

128

256

S
p
e
e
d
u
p

1c 128c 256c

color

1

256

512

1c 128c 256c

bfs

1

64

128

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

NONSPEC

Swarm

MAYSPEC

SW only

Fig. 7. Speedup of Swarm (SPEC), NONSPEC, MAYSPEC, and software-only benchmark variants on 1–256 cores. Higher is better.

Sec. VI-C and use an ideal memory allocator in Sec. VI-B.

The ideal allocator is implemented within the simulator, and

allocates and deallocates heap memory from per-core pools

with zero overhead. Memory freed by a speculative task is

not reused until the task commits. For fairness, software-only

implementations also use this allocator.

B. Espresso evaluation

Fig. 7 compares the performance of Swarm, Espresso’s

NONSPEC and MAYSPEC variants, and the software-only parallel

versions as the system scales from 1 to 256 cores. Because

most applications are hard to parallelize, MAYSPEC always

matches or outperforms the software-only versions, which

scale poorly in all cases except sssp-cage, cf, triangle,

and color. Thus, we do not consider software-only versions

further. Among the other schemes, Swarm works poorly on

cf and triangle, and sacrifices some performance on sssp-

cage, genome, and color; NONSPEC scales well in sssp-cage,

cf, triangle, genome, kmeans, and bfs, but performs poorly

in other applications because it forgoes opportunities to exploit

speculative parallelism; and MAYSPEC always performs best.

Fig. 8 gives more insight into these results by showing core

cycle and network traffic breakdowns at 256 cores for the

Swarm, NONSPEC, and MAYSPEC versions. Each group of bars

shows breakdowns for a different application. The height of

a bar in Fig. 8(a) is the execution time relative to Swarm.

Each bar shows a breakdown of how cores spend these cycles,

executing (i) non-speculative tasks, or (ii) speculative tasks that

later commit or (iii) later abort; (iv) spilling tasks to memory;

(v) stalled on a full task or commit queue; or (vi) idle because

there are no tasks available to run. Each bar of Fig. 8(b) reports

the total bytes injected into the NoC relative to Swarm, broken

down into four categories: (i) memory accesses from running

tasks (between L2s and L3, or L3 and main memory), (ii) abort

traffic (parent abort notifications and rollback memory accesses),

(iii) task enqueues and parent commit notifications, (iv) virtual

time updates (for ordered commits and barriers).

For sssp, as discussed in Sec. II-A, neither Swarm nor

NONSPEC perform best across inputs. MAYSPEC outperforms

the best of Swarm and NONSPEC by using speculation op-
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portunistically. In the shallow graph (cage), MAYSPEC runs

almost all tasks non-speculatively. Meanwhile, in the deep graph

(usa), MAYSPEC runs almost all tasks speculatively, overlapping

the processing of vertices at multiple distances to extract

enough parallelism. NONSPEC and MAYSPEC spend fewer cycles

executing tasks than Swarm’s committed cycles because non-

speculative execution is more efficient: it reduces cache pressure

(no undo log) and network traffic (less cache pressure, no aborts,

and no parent commit notifications).

cf and triangle show the largest difference between

Swarm and Espresso variants. Both applications have plentiful

non-speculative parallelism, but some tasks are large. When

tasks run speculatively in cf they fill their Bloom filters and

yield false conflicts, whereas in triangle, the long tasks

prevent short tasks from committing, leading to full queues.

NONSPEC and MAYSPEC are up to 2.6× (cf) faster than Swarm,
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and have up to 8.0× (cf) lower network traffic.

genome (sequencing), kmeans (clustering), color (vertex

coloring), and bfs (breadth-first search) show similar trends as

sssp-cage. genome has a phase with little parallelism; non-

speculative execution runs faster in this phase, reducing no-task

stalls. Though STAMP’s kmeans is nominally transactional,

locales and timestamps non-speculatively synchronize it, so

NONSPEC and MAYSPEC perform equally. Nearly all traffic is

virtual time updates because locales effectively localize accesses

to shared data, resulting in a high L2 hit rate.

The final three benchmarks show similar trends as sssp-

usa: mis (maximal independent set), astar (A* pathfinding),

and des have little non-speculative parallelism, even though

nearly all their tasks can be safely declared NONSPEC. Therefore,

NONSPEC performance is terrible, up to 142× worse than Swarm

(des). NONSPEC is dominated by no-task stalls as only a few

same-timestamp tasks run at a time. MAYSPEC addresses this

pathology and matches Swarm.

These results show that Espresso both improves performance

and efficiency while also aiding programmability. Across the

11 results, NONSPEC achieves 29× gmean speedup at 256 cores,

Swarm (SPEC) 162×, and MAYSPEC scales to 198×. Without

MAYSPEC, programmers would need to know how much non-

speculative parallelism is available to decide whether to use

NONSPEC or SPEC. MAYSPEC lets them declare any task that may

run non-speculatively as such without performance concerns.

C. Capsules case study: Dynamic memory allocation

We design a scalable speculation-friendly memory allocator

using Capsules. As discussed in Sec. II-C, simply calling

memory allocation routines within speculative tasks introduces

needless conflicts that limit parallelism. Prior work has pro-

posed allocators for software TM [43], and used HTM to

accelerate allocators for non-speculative parallel programs [25,

54]. TMs without forwarding can avoid false conflicts on

allocator metadata by using escape actions or open-nested

transactions [100], but as far as we know, no memory allocator

has been implemented for systems with speculative forwarding.

To this end, we implement capalloc, a memory allocator

built with Capsules. All allocation calls (malloc, calloc,

etc.) are capsule functions, implemented following the pattern

in Listing 2. To avoid reusing memory freed by tasks that

later abort, each deallocation call (free, cfree) creates a non-

speculative child with no timestamp to perform the deallocation.

Thus, memory is deallocated only after the caller commits.

capalloc’s internal design mimics TCMalloc [31], a state-

of-the-art and widely used memory allocator. Small allocations

(≤16 KB in our implementation) are served by a per-core

software cache. These caches hold a limited amount of memory,

and allocate from a set of central freelists. Large allocations

are served from a centralized page heap that prioritizes space

efficiency. The central freelists, large heap, and system-wide

page allocator use spinlocks to avoid data races.

The key difference between capalloc and TCMalloc is

that capalloc keeps all its metadata in untracked memory.

TCMalloc implements freelists as linked lists using the free
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Fig. 9. Normalized execution time using three implementations of dynamic
memory allocation: Ideal, Capalloc, and unmodified TCMalloc. Lower is better.

chunks themselves. The free chunks cannot be placed in

untracked memory as they are used by speculative tasks.

As explained in Sec. VI-A, we evaluate capalloc on the

four Swarm applications with frequent dynamic allocation. We

compare capalloc with TCMalloc and the ideal allocator.

Fig. 9(a) shows single-core results, which let us examine

work efficiency without concern for parallelism. Each group of

bars shows execution times for one application, normalized to

the ideal allocator. capalloc and TCMalloc perform similarly,

adding gmean slowdowns of 11% and 8%, respectively.

Fig. 9(b) shows 256-core results. TCMalloc suffers spurious

conflicts among tasks that access the same allocator metadata,

and is gmean 25× slower than the ideal allocator. By contrast,

capalloc is only gmean 30% slower than the ideal allocator.

These overheads are in line with those in the single-core system,

demonstrating capalloc’s scalability. capalloc is gmean

20× faster than TCMalloc—from 3× (nocsim) to 69× (silo).

D. Capsules case study: Disk-backed key-value store

The previous case study showed that Capsules avoid needless

conflicts; we now show the benefits of letting speculative tasks

perform controlled parallel I/O. We implement a simple disk-

backed key-value store that runs the YCSB [19] benchmark

with 4 KB tuples and 80/20% read/write queries. Each query

runs within a single speculative task. The key-value store keeps

only some of the tuples in main memory. If the requested tuple

is not in main memory, it must be fetched from disk and another

tuple must be evicted, writing it back to disk if it is dirty.

We implement two miss-handling strategies. First, spec

performs the disk fetch and eviction directly in speculative tasks,

without Capsules. Because this requires read (and possibly

write) system calls, tasks that suffer a miss are promoted and run

serially. Second, capsule performs each fetch from a capsule

function invoked within the speculative task, and performs

each eviction from a follow-up non-speculative task. This lets

capsule perform parallel I/O.
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Fig. 10. Disk utilization of spec and capsule variants of a key-value store.
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We evaluate both strategies on a 256-core system with an

NVMe SSD.3 Fig. 10(a) shows how disk bandwidth grows with

miss rate (which we control by varying the memory footprint).

spec tops out at 63 MB/s, far below the disk’s bandwidth, due

to its serialized I/O. By contrast, capsule fully saturates disk

bandwidth, achieving 1671 MB/s. Fig. 10(b) shows that, with

a 2% miss rate (where both variants are I/O-bound), capsule

achieves 24× the throughput of spec. These results show that

concurrent system calls can be highly beneficial, and Capsules

successfully unlock this benefit for speculative tasks.

VII. ADDITIONAL RELATED WORK

Espresso is most closely related to Swarm, but draws from

prior HTM and TLS systems as well. Table IV summarizes

the capabilities of these systems.

A. Task scheduling and synchronization

Prior work has investigated hardware support for scheduling

and synchronization of either speculative or non-speculative

tasks. On the speculative side, prior techniques enable threads to

speculate past barriers [36, 58, 82], and avoid aborts on known

dependences by stalling [96] or pipelining [91]. On the non-

speculative side, prior work has proposed hardware-accelerated

task-stealing [53, 81] and dataflow [15, 28, 33, 66] schedulers.

The lack of shared synchronization mechanism hinders HTM,

where mixing transactional and conventional synchronization is

unsafe [26, 92]. Prior work has crafted software primitives that

bypass transactional mechanisms [26, 92] or toggle between

transactional and lock-based synchronization [78].

By contrast, Espresso’s timestamps and locales facilitate

coordination across speculative and non-speculative tasks.

This opens the door to MAYSPEC, which allows the system

to dynamically choose to execute tasks speculatively or non-

speculatively. Moreover, timestamps and locales offer more

performance for non-speculative tasks than shared-memory

barriers and locks. Timestamps are essentially hardware-

accelerated barriers [7, 50, 83]. Locales are handled by the

task dispatch logic, so they are more efficient than hardware-

accelerated locks [49, 56, 99], as they eliminate spinning within

a task. Locales also enable locality-aware task mapping.

B. Restricted vs. unrestricted speculative tasks

TLS systems are unrestricted: their tasks can run arbitrary

code, although only the earliest active task may run a system

call or exception handler. Most HTMs are restricted: they

forbid transactions from invoking irrevocable actions, which

hinders programmability. OneTM [9] and TCC [36] permit

unrestricted transactions. Our promotion technique lies between

OneTM-serialized, which pauses all other threads, and OneTM-

concurrent, which keeps all other threads running but requires

in-memory metadata to support unbounded read/write sets. By

contrast, Espresso keeps only speculative tasks running through

a promotion. TCC, like TLS, does not support non-speculative

parallelism (all code runs speculatively except the transaction

with commit permission).

3 We model a Samsung 960 PRO, which supports 440K/360K IOPS for
random 4 KB reads/writes, with minimum latencies of 70/20 µs [80].

TABLE IV
COMPARISON OF PRIOR SYSTEMS AND ESPRESSO.

Capability HTM TLS Swarm Espresso

Ordered parallelism [
a

✔ ✔ ✔

Non-speculative parallelism ✔ ✘ ✘ ✔

Shared synchronization mechanisms ✘ ✘ ✘ ✔

Locality-aware ✘ ✘ ✔ ✔

Unrestricted speculative code [
b

✔ ✘ ✔
a Most HTMs are unordered (Sec. VII-D).
b Most HTMs are restricted (Sec. VII-B).

C. Open-nested transactions

Some speculative tasks must perform operations that would

be expensive or incompatible with their hardware speculation

mechanisms. Escape actions (Sec. II-C) are one prior solu-

tion for HTMs, as are open-nested transactions [59, 63, 64],

which run within another transaction and commit immediately

after finishing, before its enclosing transaction commits. Like

Capsules, open-nested transactions still use ordinary conflict

detection to preserve atomicity when accessing data shared

by other transactions. Like escape actions and Capsules, open-

nested transactions use abort handlers to undo their effects.

Unfortunately, open-nested transactions are also unsafe with

speculative forwarding because open-nested transactions may

lose data and control-flow integrity and then perform harmful

writes and commit.

D. Transactional memory and order

Some hardware [16, 36, 71] and software [12, 32] TMs let

programmers control the commit order among transactions,

bridging the gap between TM and TLS. Other TMs order

transactions internally, either to avoid pathologies [11, 62] or

to implement conflict serializability [4, 29, 44, 72, 74]. However,

this order is not controllable by programmers.

VIII. CONCLUSION

We have presented two techniques that bring the benefits of

non-speculative parallelism to systems with ordered speculation.

First, the Espresso execution model efficiently supports specula-

tive and non-speculative tasks, provides shared synchronization

mechanisms to all tasks, and lets the system adaptively run tasks

speculatively or non-speculatively to achieve the best of both

worlds. Second, Capsules let speculative tasks safely invoke

software-managed speculative actions, bypassing hardware

version management and conflict detection. We have shown

that these techniques improve performance and enable new

capabilities, such as scaling memory allocation and allowing

speculative tasks to safely perform parallel I/O.
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[68] H. Pan, K. Asanović, R. Cohn, and C.-K. Luk, “Controlling program
execution through binary instrumentation,” SIGARCH Comput. Archit.
News, vol. 33, no. 5, 2005.

[69] V. Pankratius and A.-R. Adl-Tabatabai, “A study of transactional memory
vs. locks in practice,” in Proc. SPAA, 2011.

[70] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” in
Proc. PLDI, 2011.

[71] L. Porter, B. Choi, and D. Tullsen, “Mapping out a path from hardware
transactional memory to speculative multithreading,” in Proc. PACT-18,
2009.

[72] X. Qian, B. Sahelices, and J. Torrellas, “OmniOrder: Directory-based
conflict serialization of transactions,” in Proc. ISCA-41, 2014.

[73] R. Rajwar and J. R. Goodman, “Transactional lock-free execution of
lock-based programs,” in Proc. ASPLOS-X, 2002.

[74] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware
transactional memory for increased concurrency,” in Proc. MICRO-41,
2008.

[75] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Sarangi, J. Tuck, and J. Torrellas,
“Thread-level speculation on a CMP can be energy efficient,” in Proc.
ICS’05, 2005.

[76] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas, “Tasking
with out-of-order spawn in TLS chip multiprocessors: Microarchitecture
and compilation,” in Proc. ICS’05, 2005.

[77] M. C. Rinard and P. C. Diniz, “Commutativity analysis: A new analysis
technique for parallelizing compilers,” ACM TOPLAS, vol. 19, no. 6,
1997.

[78] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, B. Aditya,
and E. Witchel, “TxLinux: Using and managing hardware transactional
memory in an operating system,” in Proc. SOSP-21, 2007.

[79] C. J. Rossbach, O. S. Hofmann, and E. Witchel, “Is transactional
programming actually easier?” in Proc. PPoPP, 2010.

[80] Samsung, “Samsung SSD 960 PRO M.2 Data Sheet,” 2017.
[81] D. Sanchez, R. Yoo, and C. Kozyrakis, “Flexible architectural support

for fine-grain scheduling,” in Proc. ASPLOS-XV, 2010.
[82] T. Sato, K. Ohno, and H. Nakashima, “A mechanism for speculative

memory accesses following synchronizing operations,” in Proc. IPDPS,
2000.

[83] S. L. Scott, “Synchronization and communication in the T3E multipro-
cessor,” in Proc. ASPLOS-VII, 1996.

[84] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proc. PPoPP, 2013.

[85] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: The problem
based benchmark suite,” in Proc. SPAA, 2012.

[86] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar processors,”
in Proc. ISCA-22, 1995.

[87] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable
approach to thread-level speculation,” in Proc. ISCA-27, 2000.

[88] J. G. Steffan and T. C. Mowry, “The potential for using thread-level data
speculation to facilitate automatic parallelization,” in Proc. HPCA-4,
1998.

[89] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying,
J. Emer, and D. Sanchez, “Fractal: An execution model for fine-grain
nested speculative parallelism,” in Proc. ISCA-44, 2017.

[90] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in Proc. SOSP-24,
2013.

[91] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August, “Speculative decoupled software pipelining,” in Proc.
PACT-16, 2007.

[92] H. Volos, N. Goyal, and M. M. Swift, “Pathological interaction of locks
with transactional memory,” in TRANSACT, 2008.

[93] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the Tile Processor,” IEEE Micro, vol. 27,
no. 5, 2007.

[94] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “LogTM-SE: Decoupling hardware
transactional memory from caches,” in Proc. HPCA-13, 2007.

[95] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance evaluation
of Intel R© transactional synchronization extensions for high-performance
computing,” in Proc. SC13, 2013.

[96] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, “Compiler opti-
mization of memory-resident value communication between speculative
threads,” in Proc. CGO, 2004.

[97] Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hardware for speculative
run-time parallelization in distributed shared-memory multiprocessors,”
in Proc. HPCA-4, 1998.

[98] Y. Zhang, V. Kiriansky, C. Mendis, S. P. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in Proc. IEEE BigData, 2017.

[99] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao, “Synchronization state
buffer: supporting efficient fine-grain synchronization on many-core
architectures,” in Proc. ISCA-34, 2007.

[100] C. Zilles and L. Baugh, “Extending hardware transactional memory to
support non-busy waiting and non-transactional actions,” in TRANSACT,
2006.

14

http://www.openstreetmap.org

	Introduction
	Background and Motivation
	Speculation benefits are input-dependent
	Combining speculative and non-speculative tasks
	Software-managed speculation improves parallelism

	Espresso Execution Model
	Espresso semantics
	MAYSPEC: Tasks that may speculate
	Exception model

	Capsules
	Untracked memory
	Safely entering a capsule
	Capsule execution
	Capsule programming example

	Implementation
	Baseline Swarm microarchitecture
	Espresso microarchitecture
	Capsules implementation

	Evaluation
	Experimental methodology
	Espresso evaluation
	Capsules case study: Dynamic memory allocation
	Capsules case study: Disk-backed key-value store

	Additional Related Work
	Task scheduling and synchronization
	Restricted vs. unrestricted speculative tasks
	Open-nested transactions
	Transactional memory and order

	Conclusion
	References

